For large and complex software systems, it is a time-consuming process to manually inspect error logs produced from the test suites of such systems. Whether it is for identifyingabnormal faults, or finding bugs; it is a process that limits development progress, and requires experience. An automated solution for such processes could potentially lead to efficient fault identification and bug reporting, while also enabling developers to spend more time on improving system functionality. Three unsupervised clustering algorithms are evaluated for the task, HDBSCAN, DBSCAN, and X-Means. In addition, HDBSCAN, DBSCAN and an LSTM-based autoencoder are evaluated for outlier detection. The dataset consists of error logs produced from a robotic test sy...