Att identifiera finansiella svårigheter vid bedömning av ett företags ekonomiska situation är väsentligt för att kreditgivare ska undvika kreditförluster. En viktig del av kreditbedömningen är att analysera sannolikheten för att ett företag kommer gå i konkurs eller inte. Att identifiera en förhöjd konkursrisk ar därmed en faktor som kan hjälpa kreditgivare att fatta mer varsamma investeringsbeslut. Arbetet ämnar därför att undersöka hur väl fyra olika maskininlärningsalgoritmer kan predicera okad risk för konkurs utifrån finansiell bolagsdata. Modellerna som används är logistisk regression, Support Vector Machine, Decision Trees och Random Forest. Då datan var obalanserad där antalet icke-konkurser var överrepresenterad fick modellerna trä...
Denne oppgaven lanserer en forklarbar modell for tidlig varsling av økonomisk vanskeligstilthet hos ...
In this thesis, we create a new multi-year model for predicting bankruptcies in the Norwegian market...
Varje år går ca 6 000 företag i konkurs och det påverkar intressenter i form av kreditgivare, levera...
The field of bankruptcy prediction has experienced a notable increase of interest in recent years. M...
The field of bankruptcy prediction has experienced a notable increase of interest in recent years. M...
This paper presents a deep learning model that challenges what is known in the financial field of co...
This paper presents a deep learning model that challenges what is known in the financial field of co...
Prediksjon av konkurs hos selskaper er et emne som er relevant både hos investorer, kreditorer, bank...
This thesis explores the predictive power of different machine learning algorithms in Swedish firm d...
This thesis explores the predictive power of different machine learning algorithms in Swedish firm d...
An intensive research from academics and practitioners has been provided regarding models for bankru...
Temaet for denne oppgaven er konkursprediksjon. Formålet er å undersøke hvorvidt statistiske modell...
In this thesis, we create a new multi-year model for predicting bankruptcies in the Norwegian marke...
In business analytics and the financial world, bankruptcy prediction has been ...
In business analytics and the financial world, bankruptcy prediction has been an interesting and wid...
Denne oppgaven lanserer en forklarbar modell for tidlig varsling av økonomisk vanskeligstilthet hos ...
In this thesis, we create a new multi-year model for predicting bankruptcies in the Norwegian market...
Varje år går ca 6 000 företag i konkurs och det påverkar intressenter i form av kreditgivare, levera...
The field of bankruptcy prediction has experienced a notable increase of interest in recent years. M...
The field of bankruptcy prediction has experienced a notable increase of interest in recent years. M...
This paper presents a deep learning model that challenges what is known in the financial field of co...
This paper presents a deep learning model that challenges what is known in the financial field of co...
Prediksjon av konkurs hos selskaper er et emne som er relevant både hos investorer, kreditorer, bank...
This thesis explores the predictive power of different machine learning algorithms in Swedish firm d...
This thesis explores the predictive power of different machine learning algorithms in Swedish firm d...
An intensive research from academics and practitioners has been provided regarding models for bankru...
Temaet for denne oppgaven er konkursprediksjon. Formålet er å undersøke hvorvidt statistiske modell...
In this thesis, we create a new multi-year model for predicting bankruptcies in the Norwegian marke...
In business analytics and the financial world, bankruptcy prediction has been ...
In business analytics and the financial world, bankruptcy prediction has been an interesting and wid...
Denne oppgaven lanserer en forklarbar modell for tidlig varsling av økonomisk vanskeligstilthet hos ...
In this thesis, we create a new multi-year model for predicting bankruptcies in the Norwegian market...
Varje år går ca 6 000 företag i konkurs och det påverkar intressenter i form av kreditgivare, levera...