S rastúcou popularitou hlbokých neurónových sietí, nedostatok transparentnosti spôsobenejich funkciou čiernej skrinky, zvyšuje dopyt po ich interpretácii. Cieľom tejto práce je získať nový pohľad na hlboké neurónové siete v úlohách spracovania reči. Konkrétne klasifikácia pohlavia z AudioMNIST datasetu a klasifikácia rečníka z filter bánk VoxCeleb datasetu s použitím konvolučnej a reziduálnej neurónovej siete. Na interpretáciu týchto neurónových sietí bola použitá metóda propagácie relevancií cez vrstvy. Táto metóda vytvorí tepelnú mapu, ktorá vyznačí príznaky, ktoré prispeli ku správnej klasifikácii pozitívne a ktoré negatívne. Ako výsledky interpretácie ukazujú, klasifikácie boli založené najmä na nižších frekvenciách v reči a čase. V prí...