The increased use of cloud and other large scale datacenter IT services and the associated power usage has put the spotlight on more energy-efficient datacenter management. In this paper, a simple model was developed to represent the heat rejection system and energy usage in a small DC setup. The model was then controlled by a reinforcement learning agent that handles both the load balancing of the IT workload, as well as cooling system setpoints.The main contribution is the holistic approach to datacenter control where both facility metrics, IT hardware metric and cloud service logs are used as inputs. The application of reinforcement learning in the proposed holistic setup is feasible and achieves results that outperform standard algorith...