Tato práce zkoumá využití konvolučních neuronových sítí se zaměřením na sémantickou a instanční segmentaci buněk z mikroskopických snímků. Teoretická část obsahuje popis hlubokých neuronových sítí a shrnutí široce používaných konvolučních architektur pro segmentaci obrazu. Praktická část práce je věnována vytvoření modelu konvoluční neuronové sítě na základě architektury U-Net. Dále obsahuje segmentaci buněk predikovaných obrazů pomocí tří metod, a to prahování, metody rozvodí a metody náhodného chodce.This work examines the use of convolutional neural networks with a focus on semantic and instance segmentation of cells from microscopic images. The theoretical part contains a description of deep neural networks and a summary of widely used ...