Tato práce se zabývá srovnáním metod odstranění šumu pomocí hlubokého učení a jejich implementací. V posledních letech se ukázalo, že k trénování konvolučních neuronových sítí není nutně potřeba mít párová data, tedy zašuměné a bezšumové obrázky, ale pro některé aplikace stačí pro odstranění šumu pouze ty zašuměné. Metodami uvedenými v této práci lze účinně odstranit např. aditivní Gaussovský šum a lze dosáhnout lepších výsledků než užitím některých statistických metod, které se pro odstranění šumu aktuálně používají.This thesis focuses on comparing methods of denoising by deep learning and their implementation. In the last few years, it has become clear that it is not necessary to have paired data, as for noisy and clean pictures, to train...