In this paper, we investigate the simplest wormhole solution—the Ellis–Bronnikov one—in the context of the asymptotically safe gravity (ASG) at the Planck scale. We work with three models, which employ the Ricci scalar, Kretschmann scalar, and squared Ricci tensor to improve the field equations by turning the Newton constant into a running coupling constant. For all the cases, we check the radial energy conditions of the wormhole solution and compare them with those that are valid in general relativity (GR). We verified that asymptotic safety guarantees that the Ellis–Bronnikov wormhole can satisfy the radial energy conditions at the throat radius, r0, within an interval of values of the latter, which is quite different from the result foun...