The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module M produce these decompositions: the lattice decompositions. In a first etage this can be done using endomorphisms of M, which produce a decomposition of the ring EndR(M) as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module M has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, Supp(M), of M; but, in general, it...