In this paper, we introduce the resource theory of unextendibility as a relaxation of the resource theory of entanglement. The free states in this resource theory are the -extendible states, associated with the inability to extend quantum entanglement in a given quantum state to multiple parties. The free channels are -extendible channels, which preserve the class of -extendible states. We define several quantifiers of unextendibility by means of generalized divergences and establish their properties. By utilizing this resource theory, we obtain nonasymptotic upper bounds on the rate at which quantum communication or entanglement preservation is possible over a finite number of uses of an arbitrary quantum channel assisted by -extendible ch...