We consider preprocessing a set S of n points in the plane that are in convex position into a data structure supporting queries of the following form: given a point q and a directed line I in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q subject to being to the left of line ℓ We present two data structures for this problem. The first data structure uses O(n1+ε) space and preprocessing time, and answers queries in O(21/ε log n) time. The second data structure uses O(n log3 n) space and polynomial preprocessing time, and answers queries in O(log n) time. These are the first solutions to the problem with O(log n) query time and o(n2) space. In the process of developing the second data struct...
We propose an implicit representation for the farthest Voronoi diagram of a set P of n points in the...
For a given point set in Euclidean space we consider the problem of finding (approximate) nearest ne...
A number of seemingly unrelated problems involving the proximity of N points in the plane are studie...
We consider preprocessing a set S of n points in convex position in the plane into a data structure ...
We consider preprocessing a set S of n points in convex position in the plane into a data structure ...
We consider preprocessing a set S of n points in the plane that are in convex position into a data s...
In this paper we consider proximity problems in which the queries are line segments in the plane. We...
In this paper we consider proximity problems in which the queries are line segments in the plane. We...
AbstractIn this paper we consider proximity problems in which the queries are line segments in the p...
We study the amortized number of combinatorial changes (edge insertions and removals) needed to upda...
We address the problem of replicating a Voronoi diagram V (S) of a planar point set S by making prox...
We study the amortized number of combinatorial changes (edge insertions and removals) needed to upda...
We present an algorithm to compute the geodesic L? farthest-point Voronoi diagram of m point sites i...
We study the amortized number of combinatorial changes (edge insertions and removals) needed to upda...
AbstractIn this paper we consider proximity problems in which the queries are line segments in the p...
We propose an implicit representation for the farthest Voronoi diagram of a set P of n points in the...
For a given point set in Euclidean space we consider the problem of finding (approximate) nearest ne...
A number of seemingly unrelated problems involving the proximity of N points in the plane are studie...
We consider preprocessing a set S of n points in convex position in the plane into a data structure ...
We consider preprocessing a set S of n points in convex position in the plane into a data structure ...
We consider preprocessing a set S of n points in the plane that are in convex position into a data s...
In this paper we consider proximity problems in which the queries are line segments in the plane. We...
In this paper we consider proximity problems in which the queries are line segments in the plane. We...
AbstractIn this paper we consider proximity problems in which the queries are line segments in the p...
We study the amortized number of combinatorial changes (edge insertions and removals) needed to upda...
We address the problem of replicating a Voronoi diagram V (S) of a planar point set S by making prox...
We study the amortized number of combinatorial changes (edge insertions and removals) needed to upda...
We present an algorithm to compute the geodesic L? farthest-point Voronoi diagram of m point sites i...
We study the amortized number of combinatorial changes (edge insertions and removals) needed to upda...
AbstractIn this paper we consider proximity problems in which the queries are line segments in the p...
We propose an implicit representation for the farthest Voronoi diagram of a set P of n points in the...
For a given point set in Euclidean space we consider the problem of finding (approximate) nearest ne...
A number of seemingly unrelated problems involving the proximity of N points in the plane are studie...