Additive codes over GF(9) that are self-dual with respect to the Hermitian trace inner product have a natural application in quantum information theory, where they correspond to ternary quantum error-correcting codes. However, these codes have so far received far less interest from coding theorists than self-dual additive codes over GF(4), which correspond to binary quantum codes. Self-dual additive codes over GF(9) have been classified up to length 8, and in this paper we extend the complete classification to codes of length 9 and 10. The classification is obtained by using a new algorithm that combines two graph representations of self-dual additive codes. The search space is first reduced by the fact that every code can be mapped to a we...