Multivariate complexity is a prominent field that over the last decades has developed a rich toolbox, not only to tackle seemingly intractable problems, but also to describe the boundaries of tractability in a richer and more fine-grained way. In this thesis we survey the research directions emerging after the question of fixed-parameter tractability has been settled. That is, we define and exemplify structural parameters, polynomial kernelizations, branching techniques, subexponential time algorithms and parameterized approximation algorithms. In addition, we display techniques for proving lower bounds for all of the above mentioned directions. After this, we give new results within this parameterized framework for several classic graph pr...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
Multivariate complexity is a prominent field that over the last decades has developed a rich toolbox...
Graph modification problems form an important class of algorithmic problems in computer science. In ...
In this work we summarize much of the research conducted by the author since his PhD defense in the ...
The purpose of this thesis is to give a mathematical analysis of the power of data reduction for dea...
This thesis examines degree constrained editing problems within the framework of parameterized compl...
This thesis studies exponential time algorithms that give optimum solutions to optimization problems...
At present, most of the important computational problems - be they decision, search, or optimization...
Structural Properties of Graphs and Eficient Algorithms: Problems Between Parameters Dušan Knop Para...
We study algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned in...
In the Maximum Degree Contraction problem, input is a graph G on n vertices, and integers k, d, and ...
Let $n$ be the size of a parametrized problem and $k$ the parameter. We present a full kernel for Pa...
We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard p...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
Multivariate complexity is a prominent field that over the last decades has developed a rich toolbox...
Graph modification problems form an important class of algorithmic problems in computer science. In ...
In this work we summarize much of the research conducted by the author since his PhD defense in the ...
The purpose of this thesis is to give a mathematical analysis of the power of data reduction for dea...
This thesis examines degree constrained editing problems within the framework of parameterized compl...
This thesis studies exponential time algorithms that give optimum solutions to optimization problems...
At present, most of the important computational problems - be they decision, search, or optimization...
Structural Properties of Graphs and Eficient Algorithms: Problems Between Parameters Dušan Knop Para...
We study algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned in...
In the Maximum Degree Contraction problem, input is a graph G on n vertices, and integers k, d, and ...
Let $n$ be the size of a parametrized problem and $k$ the parameter. We present a full kernel for Pa...
We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard p...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...
In the framework of parameterized complexity, exploring how one parameter affects the complexity of ...