This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordThe rotational evolution of an accreting pre-main-sequence star is influenced by its magnetic interaction with its surrounding circumstellar disk. Using the PLUTO code, we perform 2.5D magnetohydrodynamic, axisymmetric, time-dependent simulations of star-disk interaction - with an initial dipolar magnetic field structure, and a viscous and resistive accretion disk - in order to model the three mechanisms that contribute to the net stellar torque: accretion flow, stellar wind, and magnetospheric ejections (periodic inflation and reconnection events). We investigate how changes in the stellar magnetic field strength, rotation r...