The growth of data in recent years has motivated the emergence of deep learning in many Computer Sciences related fields including Recommender System (RS). Deep learning has emerged as the solution; overcoming the obstacles of traditional recommendation models. Deep learning is able to enhance recommendation quality by learning non-linear and non-trivial user-item relationship, and extracting deep and abstract feature representations for users and items. However, deep learning in RS is still new and flourishing. The contribution of this paper is two�folds. Firstly, we will be providing several insights on the advances of RS focusing on deep-learning models, datasets and evaluation metrics. Secondly, we expand on the curren...