Complex networks (CNs) have gained much attention in recent years due to their importance and popularity. The rapid growth in the size of CNs leads to more difficulties in the analysis of CNs tasks. Community Detection (CD) is an important multidisciplinary research area where many machine/deep learning-based methods have been applied to map CNs into a low-dimensional representation for extracting information similarity among members of CNs. Currently, Deep Learning (DL) is one of the promising methods to extract knowledge and learn information from high dimensional space and represent it in low dimensional space. However, designing an accurate and efficient DL-based CD method especially when dealing with large CNs is always an on-going res...