Persistent Homology (PH) has been successfully used to train networks to detect curvilinear structures and to improve the topological quality of their results. However, existing methods are very global and ignore the location of topological features. In this paper, we remedy this by introducing a new filtration function that fuses two earlier approaches: thresholding-based filtration, previously used to train deep networks to segment medical images, and filtration with height functions, typically used to compare 2D and 3D shapes. We experimentally demonstrate that deep networks trained using our PH-based loss function yield reconstructions of road networks and neuronal processes that reflect ground-truth connectivity better than networks tr...
Taking images is an efficient way to collect data about the physical world. It can be done fast and ...
We consider a new topological feauturization of $d$-dimensional images, obtained by convolving image...
In this position paper, we present a brief overview of the ways topological tools, in particular per...
Persistent homology (PH) is an algorithmic method that allows one to study shape and higher-order in...
In this work we use the persistent homology method, a technique in topological data analysis (TDA), ...
Besides per-pixel accuracy, topological correctness is also crucial for the segmentation of images w...
Generalization is challenging in small-sample-size regimes with over-parameterized deep neural netwo...
Persistent homology is a method for computing the topological features present in a given data. Rece...
Homology gives a tool to measure the "holes" in topological spaces. Persistent homology extends the ...
23 pages, 4 figuresThe use of topological descriptors in modern machine learning applications, such ...
The latest deep learning approaches perform better than the state-of-the-art signal processing appro...
International audienceDeep learning methods have achieved impressive results for 3D medical image se...
Segmentation networks are not explicitly imposed to learn global invariants of an image, such as the...
Topological Data Analysis (TDA) with its roots embedded in the field of algebraic topology has succe...
Artificial neural networks can learn complex, salient data features to achieve a given task. On the ...
Taking images is an efficient way to collect data about the physical world. It can be done fast and ...
We consider a new topological feauturization of $d$-dimensional images, obtained by convolving image...
In this position paper, we present a brief overview of the ways topological tools, in particular per...
Persistent homology (PH) is an algorithmic method that allows one to study shape and higher-order in...
In this work we use the persistent homology method, a technique in topological data analysis (TDA), ...
Besides per-pixel accuracy, topological correctness is also crucial for the segmentation of images w...
Generalization is challenging in small-sample-size regimes with over-parameterized deep neural netwo...
Persistent homology is a method for computing the topological features present in a given data. Rece...
Homology gives a tool to measure the "holes" in topological spaces. Persistent homology extends the ...
23 pages, 4 figuresThe use of topological descriptors in modern machine learning applications, such ...
The latest deep learning approaches perform better than the state-of-the-art signal processing appro...
International audienceDeep learning methods have achieved impressive results for 3D medical image se...
Segmentation networks are not explicitly imposed to learn global invariants of an image, such as the...
Topological Data Analysis (TDA) with its roots embedded in the field of algebraic topology has succe...
Artificial neural networks can learn complex, salient data features to achieve a given task. On the ...
Taking images is an efficient way to collect data about the physical world. It can be done fast and ...
We consider a new topological feauturization of $d$-dimensional images, obtained by convolving image...
In this position paper, we present a brief overview of the ways topological tools, in particular per...