URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/CESFramDP2009.htmClassification JEL : C13, C14, C15, C22, C63, G15.Submitted to Journal of Computational and Graphical Statistics.Document de travail du Centre d'Economie de la Sorbonne 2009.15 - ISSN : 1955-611XLong memory processes have been extensively studied over the past decades. When dealing with the financial and economic data, seasonality and time-varying long-range dependence can often be observed and thus some kind of non-stationarity can exist inside financial data sets. To take into account this kind of phenomena, we propose a new class of stochastic process : the locally stationary k-factor Gegenbauer process. We describe a procedure of estimating consistently the ...
Cette thèse fait appel à la théorie des ondelettes pour estimer le paramètre de mémoire longue dans ...
The paper outlines a methodology for analyzing daily stock returns that relinquishes the assumption ...
In this note we show that the locally stationary wavelet process can be decomposed into a sum of sig...
URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/CESFramDP2009.htmClassification JEL :...
In this thesis, we consider two classes of long memory processes: the stationary long memory process...
Dans cette thèse, on considère deux types de processus longues mémoires : les processus stationnaire...
URL des Documents de travail :http://ces.univ-paris1.fr/cesdp/CESFramDP2007.htmClassification JEL : ...
Long memory, also called long range dependence (LRD), is commonly detected in the analysis of real-l...
In this paper we perform a Monte Carlo study based on three well-known semiparametric estimates for ...
ABSTRACT In this article, we model financial log-return series in the Locally Stationary Wavelet (LS...
We introduce a method for reconstructing macroscopic models of one-dimensional stochastic processes ...
URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/cesdp2012.htmlDocuments de travail du...
This paper generalizes the standard long memory modeling by assuming that the long memory parameter ...
Much time series data are recorded on economic and financial variables. Statistical modelling of suc...
AbstractThere exists a wide literature on parametrically or semi-parametrically modelling strongly d...
Cette thèse fait appel à la théorie des ondelettes pour estimer le paramètre de mémoire longue dans ...
The paper outlines a methodology for analyzing daily stock returns that relinquishes the assumption ...
In this note we show that the locally stationary wavelet process can be decomposed into a sum of sig...
URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/CESFramDP2009.htmClassification JEL :...
In this thesis, we consider two classes of long memory processes: the stationary long memory process...
Dans cette thèse, on considère deux types de processus longues mémoires : les processus stationnaire...
URL des Documents de travail :http://ces.univ-paris1.fr/cesdp/CESFramDP2007.htmClassification JEL : ...
Long memory, also called long range dependence (LRD), is commonly detected in the analysis of real-l...
In this paper we perform a Monte Carlo study based on three well-known semiparametric estimates for ...
ABSTRACT In this article, we model financial log-return series in the Locally Stationary Wavelet (LS...
We introduce a method for reconstructing macroscopic models of one-dimensional stochastic processes ...
URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/cesdp2012.htmlDocuments de travail du...
This paper generalizes the standard long memory modeling by assuming that the long memory parameter ...
Much time series data are recorded on economic and financial variables. Statistical modelling of suc...
AbstractThere exists a wide literature on parametrically or semi-parametrically modelling strongly d...
Cette thèse fait appel à la théorie des ondelettes pour estimer le paramètre de mémoire longue dans ...
The paper outlines a methodology for analyzing daily stock returns that relinquishes the assumption ...
In this note we show that the locally stationary wavelet process can be decomposed into a sum of sig...