We investigate the probabilistic and analytic properties of Volterra processes constructed as pathwise integrals of deterministic kernels with respect to the Hölder continuous trajectories of Hilbert-valued Gaussian processes. To this end, we extend the Volterra sewing lemma from [18] to the two dimensional case, in order to construct two dimensional operator-valued Volterra integrals of Young type. We prove that the covariance operator associated to infinite dimensional Volterra processes can be represented by such a two dimensional integral, which extends the current notion of representation for such covariance operators. We then discuss a series of applications of these results, including the construction of a rough path associated to a ...