As a result of the COVID19 pandemic, more higher-level education courses have moved to online channels, raising challenges in monitoring students’ learning progress. Thanks to the development of learning technologies, learning behaviours can be recorded at a more fine-grain level of detail, which can then be further analysed. Inspired by approaching education as a complex system, this research aims to develop a novel approach to analyse students’ learning behavioural data, utilising physical methods. First, essential learning behavioural features are extracted. Second, a range of techniques, e.g., Random Matrix Theory and Community Detection techniques, were utilised to clean the noise in the data and cluster the students into groups with s...