version 1The birth of the theory of elliptic functions dates back to Euler's reception of Fagnano's works on the Lemniscate. Commenting on a disputed reading by C. L. Siegel of Fagnano's formula in the light of complex multiplication, this article sets out to delineate « context of discovery » and « context of justification » in order to investigate the meaning of the conceptual filiation from the prehistory of Euler's addition theorem to the XIXth century arithmetic algebraic conception of complex multiplication.La naissance de la théorie des fonctions elliptiques remonte à la réception par Euler des travaux de Fagnano sur la lemniscate. À partir d'une hypothèse contestée de C. L. Siegel interprétant la formule du doublement de l'arc à la ...
Leibniz décrit dans ce texte de 1710 sa machine arithmétique, sur laquelle il travaillait dès 1673, ...
We generalize the notion of cyclic code and we construct codes as ideals in finite quotients of non-...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...
version 1The birth of the theory of elliptic functions dates back to Euler's reception of Fagnano's ...
This dissertation is devoted to the description of the establishment of mathematical symbolic writin...
AbstractThe Compendy de la praticque des nombres (1471) is one of a number of commercial arithmetics...
International audienceDans cet article on montre qu'au lieu de fonder les mathématiques sur la notio...
Particle physic is based on a theory which can be tested on the current large colliders. Measurments...
International audienceCertain kinds of calculation errors found in Babylonian texts, dating either f...
Malgré la progression de certaines théories contemporaines qui affirment le déterminisme des actes h...
Où l'on découvrira toute la modernité d'Euclide en installant la géométrie plane sur un ordinateur..
The number in the title appears in a problem proposed to Pierre Fermat by M. de Saint-Martin, a memb...
In the first chapter, we study the conditioning of a completely asymmetric Lévy process to remain in...
This thesis is devoted to the study of the canonical height on abelian varieties. It focuses on the ...
15 pagesThis article presents an historical survey on the development of the concept and application...
Leibniz décrit dans ce texte de 1710 sa machine arithmétique, sur laquelle il travaillait dès 1673, ...
We generalize the notion of cyclic code and we construct codes as ideals in finite quotients of non-...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...
version 1The birth of the theory of elliptic functions dates back to Euler's reception of Fagnano's ...
This dissertation is devoted to the description of the establishment of mathematical symbolic writin...
AbstractThe Compendy de la praticque des nombres (1471) is one of a number of commercial arithmetics...
International audienceDans cet article on montre qu'au lieu de fonder les mathématiques sur la notio...
Particle physic is based on a theory which can be tested on the current large colliders. Measurments...
International audienceCertain kinds of calculation errors found in Babylonian texts, dating either f...
Malgré la progression de certaines théories contemporaines qui affirment le déterminisme des actes h...
Où l'on découvrira toute la modernité d'Euclide en installant la géométrie plane sur un ordinateur..
The number in the title appears in a problem proposed to Pierre Fermat by M. de Saint-Martin, a memb...
In the first chapter, we study the conditioning of a completely asymmetric Lévy process to remain in...
This thesis is devoted to the study of the canonical height on abelian varieties. It focuses on the ...
15 pagesThis article presents an historical survey on the development of the concept and application...
Leibniz décrit dans ce texte de 1710 sa machine arithmétique, sur laquelle il travaillait dès 1673, ...
We generalize the notion of cyclic code and we construct codes as ideals in finite quotients of non-...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...