In this paper we shall define the special-valued multiple Hurwitz zeta functions, namely the multiple t-values t(α) and define similarly the multiple star t-values as t⋆(α). Then we consider the sum of all such multiple (star) t-values of fixed depth and weight with even argument and prove that such a sum can be evaluated when the evaluations of t({2m}n) and t⋆(f{m}n) are clear. We give the evaluations of them in terms of the classical Euler numbers through their generating functions.Mathematics Subject Classifcation (2010): 40B05, 11M35, 05A15.Keywords: Hurwitz zeta function, multiple zeta value, sum formula, generating functions, infinite series and product
AbstractIn this work we obtain a new approach to closed expressions for sums of products of Bernoull...
Multiple zeta values are the numbers defined by the convergent series ζ(s1,s2,…,sk)=∑n1>n2>⋯>nk>0(1/...
Abstract: In this paper, the Euler-Maclaurin Summation formula was researched, the purpose of resear...
We perform a further investigation for the multiple zeta values and their variations and generalizat...
Abstract. A generating function for specified sums of multiple zeta values is defined and a differen...
Two major changes : improved treatment of the Hurwitz multiple zeta functions, and more conceptual (...
The purpose of this paper is a study of the general finite sums Phi N,d(K) := Sigma(N >= n1 >=...>...
In the last decade, many authors essentially contributed to the attractive theory of multiple zeta v...
The aim of this paper is the study of a transformation dealing with the general K-fold infinite seri...
We address the problem of finding out the values of the Hurwitz zeta function at the positive intege...
In the present paper, we prove some generalizations of the sum formula for multiple zeta values by u...
Let s1,⋯,sd be d positive integers and define the multiple t-values of depth d byt(s1,⋯,sd)=∑n1\u3e⋯...
Let s1,⋯,sd be d positive integers and define the multiple t-values of depth d byt(s1,⋯,sd)=∑n1\u3e⋯...
International audienceWe give various contributions to the theory of Hurwitz zeta-function. An eleme...
AbstractFor positive integers α1,α2,…,αr with αr⩾2, the multiple zeta value or r-fold Euler sum is d...
AbstractIn this work we obtain a new approach to closed expressions for sums of products of Bernoull...
Multiple zeta values are the numbers defined by the convergent series ζ(s1,s2,…,sk)=∑n1>n2>⋯>nk>0(1/...
Abstract: In this paper, the Euler-Maclaurin Summation formula was researched, the purpose of resear...
We perform a further investigation for the multiple zeta values and their variations and generalizat...
Abstract. A generating function for specified sums of multiple zeta values is defined and a differen...
Two major changes : improved treatment of the Hurwitz multiple zeta functions, and more conceptual (...
The purpose of this paper is a study of the general finite sums Phi N,d(K) := Sigma(N >= n1 >=...>...
In the last decade, many authors essentially contributed to the attractive theory of multiple zeta v...
The aim of this paper is the study of a transformation dealing with the general K-fold infinite seri...
We address the problem of finding out the values of the Hurwitz zeta function at the positive intege...
In the present paper, we prove some generalizations of the sum formula for multiple zeta values by u...
Let s1,⋯,sd be d positive integers and define the multiple t-values of depth d byt(s1,⋯,sd)=∑n1\u3e⋯...
Let s1,⋯,sd be d positive integers and define the multiple t-values of depth d byt(s1,⋯,sd)=∑n1\u3e⋯...
International audienceWe give various contributions to the theory of Hurwitz zeta-function. An eleme...
AbstractFor positive integers α1,α2,…,αr with αr⩾2, the multiple zeta value or r-fold Euler sum is d...
AbstractIn this work we obtain a new approach to closed expressions for sums of products of Bernoull...
Multiple zeta values are the numbers defined by the convergent series ζ(s1,s2,…,sk)=∑n1>n2>⋯>nk>0(1/...
Abstract: In this paper, the Euler-Maclaurin Summation formula was researched, the purpose of resear...