We show in the Zermelo-Fraenkel set theory ZF without the axiom of choice:(i) Given an finnite set X, the Stone space S(X) is ultrafilter compact.(ii) For every finnite set X, every countable filterbase of X extends to an ultra-filter iff for every finnite set X, S(X) is countably compact.(iii) ω has a free ultrafilter iff every countable, ultrafilter compact space is countably compact.We also show the following:(iv) There are a permutation model N and a set X ∈ N such that X has no free ultrafilters and S(X) is not compact but S(X) is countably compact and every countable filterbase of X extends to an ultrafilter.(v) It is relatively consistent with ZF that every countable filterbase of ω extends to an ultrafilter but there exists a counta...