Click on the link to view the abstract.Keywords: Equivalence domination, total domination, P3-forming setQuaestiones Mathematicae 36(2013), 331-34
A set D ⊆ V (G) is a dominating set of G if every vertex not in D is adjacent to at least one vertex...
A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent t...
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to ...
Let G = (V, E) be a graph. A subset S of V is called an equivalence set if every component of the in...
For a graph G = (V, E), a subset S ⊆ V (G) is an equivalence dominating set if for every vertex v ∈ ...
Let G = (V,E) be a graph. A subset S of V is called an equivalence set if every component of the ind...
Let G = (V,E) be a graph. A subset S of V is called an equivalence set if every component of the ind...
A set D of vertices of a graph G = (VG, EG) is a dominating set of G if every vertex in VG — D is ad...
Let be a simple, finite and undirected graph and without isolated vertex. A subset D of V is s...
AbstractLet G be a simple graph, and let p be a positive integer. A subset D⊆V(G) is a p-dominating ...
AbstractWe are interested in a notion of domination related to both vertices and edges of graphs. We...
2-s2.0-85097108287Let G = (V(G)}E(G)) be a simple undirected graph of order n and size m, and x, y9 ...
Domination number in Graph Theory, Set-Domination number and its relation with different parametres ...
AbstractLet G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,x)=...
A subset S of VG is called a total dominating set of a graph G if every vertex in VG is adjacent to ...
A set D ⊆ V (G) is a dominating set of G if every vertex not in D is adjacent to at least one vertex...
A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent t...
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to ...
Let G = (V, E) be a graph. A subset S of V is called an equivalence set if every component of the in...
For a graph G = (V, E), a subset S ⊆ V (G) is an equivalence dominating set if for every vertex v ∈ ...
Let G = (V,E) be a graph. A subset S of V is called an equivalence set if every component of the ind...
Let G = (V,E) be a graph. A subset S of V is called an equivalence set if every component of the ind...
A set D of vertices of a graph G = (VG, EG) is a dominating set of G if every vertex in VG — D is ad...
Let be a simple, finite and undirected graph and without isolated vertex. A subset D of V is s...
AbstractLet G be a simple graph, and let p be a positive integer. A subset D⊆V(G) is a p-dominating ...
AbstractWe are interested in a notion of domination related to both vertices and edges of graphs. We...
2-s2.0-85097108287Let G = (V(G)}E(G)) be a simple undirected graph of order n and size m, and x, y9 ...
Domination number in Graph Theory, Set-Domination number and its relation with different parametres ...
AbstractLet G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,x)=...
A subset S of VG is called a total dominating set of a graph G if every vertex in VG is adjacent to ...
A set D ⊆ V (G) is a dominating set of G if every vertex not in D is adjacent to at least one vertex...
A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent t...
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to ...