We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain a lower bounds for the size of Galois orbits of points in a generalised Hecke orbit in terms of these height, assuming a version of the Mumford-Tate conjecture. We then use it to prove the generalised Andr\'e-Pink-Zannier conjecture under this assumption by implementing the Pila-Zannier strategy
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j- function and, with...
AbstractWe prove that the mixed André–Oort conjecture holds for any mixed Shimura variety if a lower...
The André-Pink conjecture predicts that a subvariety of a Shimura variety which has dense intersecti...
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersecti...
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersecti...
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
The Hecke orbit conjecture plays an important role in understanding the geometric structure of Shimu...
In this paper, we prove a height bound for points on the base of a family of abelian varieties at wh...
In this thesis, we study some arithmetic and geometric problems for Shimura varieties. This thesis c...
Dans cette thèse, nous nous intéressons à l'étude de l'arithmétique et de la géométrie des variétés ...
This thesis consists of six chapters and two appendices. The first two chapters contain the introduc...
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good r...
Consider a smooth irreducible Hodge generic curve $S$ defined over $\bar{\Q}$ in the Torelli locus $...
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j- function and, with...
AbstractWe prove that the mixed André–Oort conjecture holds for any mixed Shimura variety if a lower...
The André-Pink conjecture predicts that a subvariety of a Shimura variety which has dense intersecti...
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersecti...
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersecti...
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
The Hecke orbit conjecture plays an important role in understanding the geometric structure of Shimu...
In this paper, we prove a height bound for points on the base of a family of abelian varieties at wh...
In this thesis, we study some arithmetic and geometric problems for Shimura varieties. This thesis c...
Dans cette thèse, nous nous intéressons à l'étude de l'arithmétique et de la géométrie des variétés ...
This thesis consists of six chapters and two appendices. The first two chapters contain the introduc...
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good r...
Consider a smooth irreducible Hodge generic curve $S$ defined over $\bar{\Q}$ in the Torelli locus $...
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of ...
In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j- function and, with...
AbstractWe prove that the mixed André–Oort conjecture holds for any mixed Shimura variety if a lower...