Epitaxial growth on a surface vicinal to a high-symmetry crystallographic plane occurs through the propagation of atomic steps, a process called step-flow growth. In some instances, the steps tend to form close groups (or bunches), a phenomenon termed step bunching, which corresponds to an instability of the equal-spacing step propagation. Over the last fifty years, various mechanisms have been proposed to explain step bunching, the most prominent of which are the inverse Ehrlich–Schwoebel effect (i.e., the asymmetry which favors the attachment of adatoms from the upper terrace), elastically mediated interactions between steps (in heteroepitaxy), step permeability (in electromigration-controlled growth), and the chemical effect (which coupl...