Le filtrage par filtre de Kalman d'ensemble (EnKF) pour des systèmes dynamiques non-linéaires nécessite de raffiner l'algorithme initial pour obtenir de bonnes performances. Les indicateurs de qualité de prévision « Forecast Sensitivity Observation Impact » (FSOI) permettent ces améliorations. En suivant cette voie, cette thèse propose d'utiliser et comparer de nouveaux indicateurs inspirés des FSOI, pour formuler des stratégies d'assimilation consistant à sélectionner les instants des étapes d'analyse et le nombre d'observations assimilées pour chacune. Les indicateurs a priori se calculent à l'arrivée d'une observation et les indicateurs a posteriori après l'étape d'analyse. Leurs coûts numériques sont calculés et discutés, montrant une u...
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman ...
Among many techniques in sequential data assimilation, the ensemble Kalman lter (EnKF), proposed by ...
In this contribution, the problem of data assimilation as state estimation for dynamical systems und...
Le filtrage par filtre de Kalman d'ensemble (EnKF) pour des systèmes dynamiques non-linéaires nécess...
Data assimilation with ensemble Kalman filters (EnKF) for non-linear dynamical systems implies some ...
Cette thèse porte sur les méthodes d'assimilation de données, qui consistent à combiner des informat...
a. Ensemble of perturbed assimilations versus deterministic square-root filters The principles of en...
This thesis is concerned with the data assimilation methods which combine the dynamical model with t...
The ensemble Kalman filter (EnKF) is a 4-dimensional data-assimilation method that uses a Monte-Carl...
A new method to quantify the nonlinearity of data assimilation problems is proposed. The method incl...
We describe a simple adaptive quality control procedure that limits the impact of individual observa...
Data Assimilation comprehensively covers data assimilation and inverse methods, including both tradi...
Operational forecasting with simulation models involves the melding of observations and model dynami...
Data assimilation considers the problem of using a variety of data to calibrate model-based estimate...
The analysis correction made by data assimilation (DA) can introduce model shock or artificial signa...
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman ...
Among many techniques in sequential data assimilation, the ensemble Kalman lter (EnKF), proposed by ...
In this contribution, the problem of data assimilation as state estimation for dynamical systems und...
Le filtrage par filtre de Kalman d'ensemble (EnKF) pour des systèmes dynamiques non-linéaires nécess...
Data assimilation with ensemble Kalman filters (EnKF) for non-linear dynamical systems implies some ...
Cette thèse porte sur les méthodes d'assimilation de données, qui consistent à combiner des informat...
a. Ensemble of perturbed assimilations versus deterministic square-root filters The principles of en...
This thesis is concerned with the data assimilation methods which combine the dynamical model with t...
The ensemble Kalman filter (EnKF) is a 4-dimensional data-assimilation method that uses a Monte-Carl...
A new method to quantify the nonlinearity of data assimilation problems is proposed. The method incl...
We describe a simple adaptive quality control procedure that limits the impact of individual observa...
Data Assimilation comprehensively covers data assimilation and inverse methods, including both tradi...
Operational forecasting with simulation models involves the melding of observations and model dynami...
Data assimilation considers the problem of using a variety of data to calibrate model-based estimate...
The analysis correction made by data assimilation (DA) can introduce model shock or artificial signa...
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman ...
Among many techniques in sequential data assimilation, the ensemble Kalman lter (EnKF), proposed by ...
In this contribution, the problem of data assimilation as state estimation for dynamical systems und...