There is today a large family of proof systems based upon variouslogics: The Calculus of Inductive Constructions, Higher-Order logic orSet theory, etc. The diversity of proof systems has the negativeconsequence that theorems are formalized many times. One way toovercome this issue would be to make proof systems interoperable. Inthis thesis, we have tackled the interoperability problem for proofsystems both on the theoretical and the practical side using theDedukti logical framework.We begin our journey by looking at Cumulative Type Systems (CTS), afamily of type systems which extends that of Pure Type Systemswith a subtyping relation. CTS provides a common skeleton to manylogics used today. The logic behind Coq, HOL-Light, Lean, Matita orPV...