This dissertation addresses the problem of Machine Translation (MT), which is defined as an automated translation of a document written in one language (the source language) to another (the target language) by a computer. The MT task requires various types of knowledge of both the source and target language, e.g., linguistic rules and linguistic exceptions. Traditional MT systems rely on an extensive parsing strategy to decode the linguistic rules and use a knowledge base to encode those linguistic exceptions. However, the construction of the knowledge base becomes an issue as the translation system grows. To overcome this difficulty, real translation examples are used instead of a manually-crafted knowledge base. This design strategy is kn...