Este trabalho é uma investigação sobre o comportamento das Redes Bayesianas (RB) discretas que visam resolver problemas de classificação. Esta metodologia é baseada em teorias dos grafos e de probabilidade, sendo as RBs definidas como um modelo gráfico probabilístico que permite visualizar as relações entre as variáveis consideradas aleatórias e, em geral, simplifica o entendimento de domínios complexos. Com o intuito de compreender seu desempenho, foram selecionados os classificadores Naïve Bayes (NB), o Tree Augmented Naïve Bayes (TAN), o K-Dependence Bayesian Network (KDB), o Bayesian Network Augmented Naïve Bayes (BAN), o General Bayesian Network (GBN) e o Averaged One-Dependence Estimator (AODE) para serem comparados. Desse modo, o AOD...
Bayesian networks are directed acyclic graphs that code the relationships of conditional dependence...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
AbstractThe use of Bayesian Networks (BNs) as classifiers in different fields of application has rec...
Modelos de Credit Scoring são utilizados para estimar a probabilidade de um cliente proponente ao cr...
0 problema de classificação em reconhecimento de padrões pode ser interpretado como um problema de e...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
Bayesian networks are powerful tools as they represent probability distributions as graphs. They wor...
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal stra...
The Knowledge Discovery in Databases (KDD) techniques have grown from the need for obtain more infor...
The bnclassify package provides state-of-the art algorithms for learning Bayesian network classifier...
The objective of this work is to introduce two algorithms for supervised Bayesian network incrementa...
In this paper, we empirically evaluate algorithms for learning four Bayesian network (BN) classifier...
Um dos desafios para o uso de redes Bayesianas refere-se à construção das Tabelas de Probabilidade d...
There are two categories of well-known approach (as basic principle of classification process) for l...
Bayesian networks are directed acyclic graphs that code the relationships of conditional dependence...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
AbstractThe use of Bayesian Networks (BNs) as classifiers in different fields of application has rec...
Modelos de Credit Scoring são utilizados para estimar a probabilidade de um cliente proponente ao cr...
0 problema de classificação em reconhecimento de padrões pode ser interpretado como um problema de e...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
Bayesian networks are powerful tools as they represent probability distributions as graphs. They wor...
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal stra...
The Knowledge Discovery in Databases (KDD) techniques have grown from the need for obtain more infor...
The bnclassify package provides state-of-the art algorithms for learning Bayesian network classifier...
The objective of this work is to introduce two algorithms for supervised Bayesian network incrementa...
In this paper, we empirically evaluate algorithms for learning four Bayesian network (BN) classifier...
Um dos desafios para o uso de redes Bayesianas refere-se à construção das Tabelas de Probabilidade d...
There are two categories of well-known approach (as basic principle of classification process) for l...
Bayesian networks are directed acyclic graphs that code the relationships of conditional dependence...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
AbstractThe use of Bayesian Networks (BNs) as classifiers in different fields of application has rec...