Em seu Décimo Problema, Hilbert indaga se existe um procedimento efetivo que decida se uma dada equação diofantina admite solução. Neste trabalho vamos mostrar uma prova, finalizada por Yuri Matyasevic na década de setenta, de que tal procedimento efetivo não existe. Ao final, mostraremos como esse resultado tem relações com a teoria de complexidade de algoritmos. Mais especificamente, veremos que se a demonstração da insolubilidade do Décimo Problema de Hilbert puder ser formalizada em um certo fragmento da aritmética de Peano, em um sentido que iremos precisar, então NP=coNPHilbert, in his Tenth Problem, questioned whether there would exist an effective procedure which decided if a given diofantine equation has solution. In this work, we ...