Neste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e tamb...