O método mais utilizado no ajuste de modelos de regressão múltipla é o de mínimos quadrados, devido a suas propriedades estatísticas serem amplamente estudadas e facilidades computacionais. Contudo, este método é sensível a valores aberrantes, que são muito freqüentes no caso da distribuição dos erros possuir caudas pesadas. O objetivo desta dissertação é apresentar o método de estimação 'L IND.1', que é resistente a valores aberrantes na variável resposta. Será explorado, em particular, o problema de seleção de variáveis, sendo apresentados e desenvolvidos os critérios quando são analisadas as possíveis regressões, e procedimento automáticos de seleção. Um estudo preliminar sobre os efeitos da multicolinearidade nas estimativas 'L IND.1' é...