Salt hydrates are promising candidates for the long-term thermochemical heat storage (TCES) in the building environment. In such storage systems, the surplus of energy will be exploited in an endothermic reaction to dehydrate the salt hydrates. Once it is demanded, the stored energy will be released through an exothermic reaction by hydrating the salt, which results in an increase in the mass and temperature of salt particles as well as changes in the species of material. In order to construct an improved storage system, it is very important to deeply investigate the details of the (de)hydration processes in salt hydrates. Poor heat and mass transfer is the bottle neck in this technology. Therefore, the main objective of this work is to inv...