We show how the fine structure in shift-tail equivalence, appearing in the non-commutative geometry of Cuntz-Krieger algebras developed by the first two listed authors, has an analogue in a wide range of other Cuntz-Pimsner algebras. To illustrate this structure, and where it appears, we produce an unbounded representative of the defining extension of the Cuntz-Pimsner algebra constructed from a finitely generated projective bi-Hilbertian module, extending work by the third listed author with Robertson and Sims. As an application, our construction yields new spectral triples for Cuntz and Cuntz-Krieger algebras and for Cuntz-Pimsner algebras associated to vector bundles twisted by an equicontinuous *-automorphism
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
Abstract. A continuous one-parameter group of unitary isometries of a right-Hilbert C*-bimodule indu...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
We show how the fine structure in shift-tail equivalence, appearing in the non-commutative geometry ...
We show how the fine structure in shift-tail equivalence, appearing in the non-commutative geometry ...
© Cambridge University Press, 2016 We show how the fine structure in shift–tail equivalence, appeari...
\ua9 Cambridge University Press, 2016 We show how the fine structure in shift–tail equivalence, appe...
We show how the fine structure in shift–tail equivalence, appearing in the non-commutative geometry ...
For Cuntz-Pimsner algebras of bi-Hilbertian bimodules with finite Jones-Watatani index satisfying so...
We define a notion of strong shift equivalence for C* -correspondences and show that strong shift eq...
For Cuntz-Pimsner algebras of bi-Hilbertian bimodules with finite Jones-Watatani index satisfying so...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
Abstract. Let A be a separable unital C*-algebra and let pi: A → L(H) be a faithful representation o...
Let A be a separable unital C∗-algebra. Let pi: A → L(H) be a faithful representation of A on a sepa...
Let X be a Hilbert bimodule over a C*-algebra A. We analyse the structure of the associated Cuntz-Pi...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
Abstract. A continuous one-parameter group of unitary isometries of a right-Hilbert C*-bimodule indu...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
We show how the fine structure in shift-tail equivalence, appearing in the non-commutative geometry ...
We show how the fine structure in shift-tail equivalence, appearing in the non-commutative geometry ...
© Cambridge University Press, 2016 We show how the fine structure in shift–tail equivalence, appeari...
\ua9 Cambridge University Press, 2016 We show how the fine structure in shift–tail equivalence, appe...
We show how the fine structure in shift–tail equivalence, appearing in the non-commutative geometry ...
For Cuntz-Pimsner algebras of bi-Hilbertian bimodules with finite Jones-Watatani index satisfying so...
We define a notion of strong shift equivalence for C* -correspondences and show that strong shift eq...
For Cuntz-Pimsner algebras of bi-Hilbertian bimodules with finite Jones-Watatani index satisfying so...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
Abstract. Let A be a separable unital C*-algebra and let pi: A → L(H) be a faithful representation o...
Let A be a separable unital C∗-algebra. Let pi: A → L(H) be a faithful representation of A on a sepa...
Let X be a Hilbert bimodule over a C*-algebra A. We analyse the structure of the associated Cuntz-Pi...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...
Abstract. A continuous one-parameter group of unitary isometries of a right-Hilbert C*-bimodule indu...
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algeb...