DOI: 10.1177/0278364910393287© 2011 The AuthorsWe present a novel algorithm for topological mapping, which is the problem of finding the graph structure of an environment from a sequence of measurements. Our algorithm, called Online Probabilistic Topological Mapping (OPTM), systematically addresses the problem by constructing the posterior on the space of all possible topologies given measurements. With each successive measurement, the posterior is updated incrementally using a Rao–Blackwellized particle filter. We present efficient sampling mechanisms using data-driven proposals and prior distributions on topologies that further enable OPTM’s operation in an online manner. OPTM can incorporate various sensors seamlessly, as is demons...