In order to achieve high-sensitivity time-domain diffuse correlation spectroscopy (TD-DCS) measurement of functional changes in cerebral blood flow, this study applied simulation methods to optimize the TD-DCS system under real experimental conditions (including the consideration of the effects of finite coherence length ${L_C}$ and non-ideal instrument response function IRF). Under a real experimental condition where the incident power is 75 mW, the source-detector distance is 1.0 cm, and the full width at half maxima of the IRF is 160 ps, we used simulation experiments to investigate the relationship between the contrast of the intensity autocorrelation function (${g_2}$) in two brain functional states (i.e., baseline and activation) and ...