This thesis concerns the classes of analytic functions on bounded, n-connected domains known as the Smirnov classes Ep, where p \u3e 0. Functions in these classes satisfy a certain growth condition and have a relationship to the more well known classes of functions known as the Hardy classes Hp. In this thesis I will show how the geometry of a given domain will determine the existence of non-constant analytic functions in Smirnov classes that possess real boundary values. This is a phenomenon that does not occur among functions in the Hardy classes. The preliminary and background information is given in Chapters 1 and 3 while the main results of this thesis are presented in Chapters 2 and 4. In Chapter 2, I will consider the case of the sim...
We prove the restriction maps define continuous linear operators on the Smirnov classes for some cer...
AbstractThe paper deals with problems relating to the theory of Hankel operators. Let G be a bounded...
We characterize the duals and biduals of the L-p-analogues N-alpha(p) of the standard Nevanlinna cla...
This thesis concerns the classes of analytic functions on bounded, n-connected domains known as the ...
This thesis concerns the classes of analytic functions on bounded, n-connected domains known as the ...
The Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes is ...
F\rnctional analytic properties of many classical spaces of analytic functions have received much at...
Introduction. Quoting from a well-known American mathematician Lipman Bers [1] “It would be tempting...
We survey a few classes of analytic functions on the disk that have real boundary values almost ever...
Abstract. A solution of the Dirichlet problem for harmonic functions from the Smirnov class is obtai...
AbstractThe Smirnov Class N+ of analytic functions on the disk has traditionally been studied with t...
Letf(z) map the unit disk 1 z 1 < 1 conformally onto a domain D bound& by a rectifiable Jorda...
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sen...
Let N+ denote the Srnirnov class on the open unit disc D. It is easy to sec that for any outer funct...
Abstract. We give a concrete example of a diagonal operator acting in the Hardy space H2 (D) for whi...
We prove the restriction maps define continuous linear operators on the Smirnov classes for some cer...
AbstractThe paper deals with problems relating to the theory of Hankel operators. Let G be a bounded...
We characterize the duals and biduals of the L-p-analogues N-alpha(p) of the standard Nevanlinna cla...
This thesis concerns the classes of analytic functions on bounded, n-connected domains known as the ...
This thesis concerns the classes of analytic functions on bounded, n-connected domains known as the ...
The Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes is ...
F\rnctional analytic properties of many classical spaces of analytic functions have received much at...
Introduction. Quoting from a well-known American mathematician Lipman Bers [1] “It would be tempting...
We survey a few classes of analytic functions on the disk that have real boundary values almost ever...
Abstract. A solution of the Dirichlet problem for harmonic functions from the Smirnov class is obtai...
AbstractThe Smirnov Class N+ of analytic functions on the disk has traditionally been studied with t...
Letf(z) map the unit disk 1 z 1 < 1 conformally onto a domain D bound& by a rectifiable Jorda...
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sen...
Let N+ denote the Srnirnov class on the open unit disc D. It is easy to sec that for any outer funct...
Abstract. We give a concrete example of a diagonal operator acting in the Hardy space H2 (D) for whi...
We prove the restriction maps define continuous linear operators on the Smirnov classes for some cer...
AbstractThe paper deals with problems relating to the theory of Hankel operators. Let G be a bounded...
We characterize the duals and biduals of the L-p-analogues N-alpha(p) of the standard Nevanlinna cla...