The output of a vertical linear array is used to infer about the parameters of the normal mode model that describes acoustic propagation in a shallow water. Existing subspace algorithms perform singular vector decomposition of the array data matrix to estimate the sampled model functions. Estimates are exact only if the sensing array is totally covering the water column. We design a new subspace algorithm free from this very restrictive requirement. We use two short hydrophone arrays and activate a monochromatic source at different depths. Estimates of both the modal functions and the wave numbers are obtained in a fully automatic and search-free manner. The algorithm can be qualified as truly high resolution in the sense that, while using ...