We determine that the continuous-state branching processes for which the genealogy, suitably time-changed, can be described by an autonomous Markov process are precisely those arising from $\alpha$-stable branching mechanisms. The random ancestral partition is then a time-changed $\Lambda$-coalescent, where $\Lambda$ is the Beta-distribution with parameters $2-\alpha$ and $\alpha$, and the time change is given by $Z^{1-\alpha}$, where $Z$ is the total population size. For $\alpha = 2$ (Feller's branching diffusion) and $\Lambda = \delta_0$ (Kingman's coalescent), this is in the spirit of (a non-spatial version of) Perkins' Disintegration Theorem. For $\alpha =1$ and $\Lambda$ the uniform distribution on $[0,1]$, this is the duality discover...