Environmental monitoring of aquatic systems is the key requirement for sustainable environmental protection and future drinking water supply. The quality of water resources depends on the effectiveness of water treatment plants to reduce chemical pollutants, such as nitrates, pharmaceuticals, or microplastics. Changes in water quality can vary rapidly and must be monitored in real-time, enabling immediate action. In this study, we test the feasibility of a deep UV Raman spectrometer for the detection of nitrate/nitrite, selected pharmaceuticals and the most widespread microplastic polymers. Software utilizing artificial intelligence, such as a convolutional neural network, is trained for recognizing typical spectral patterns of individual p...