For a Galois extension $K/F$ with $\text{char}(K)\neq 2$ and $\text{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, we determine the $\mathbb{F}_2[\text{Gal}(K/F)]$-module structure of $K^\times/K^{\times 2}$. Although there are an infinite number of (pairwise non-isomorphic) indecomposable $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}]$-modules, our decomposition includes at most $9$ indecomposable types. This paper marks the first time that the Galois module structure of power classes of a field has been fully determined when the modular representation theory allows for an infinite number of indecomposable types.Comment: v1: 26 pages. v2: 23 pages. Theorem 1 includes an additional summand type; c...
Soient p un nombre premier et \mathbf{k} un corps local contenant une racine primitive p-ième de l'u...
Soient p un nombre premier et \mathbf{k} un corps local contenant une racine primitive p-ième de l'u...
AbstractWe introduce a new method for finding Galois groups, by modifying the p-group generation alg...
If K/F is a Galois field extension with Galois group of prime power order distinct from char(F), the...
ABSTRACT. Let LÛK be a finite Galois extension of local fields which are finite extensions of Qp, th...
In a previous article we introduced various moduli stacks of two-dimensional tamely potentially Bars...
For L/K, any totally ramified cyclic extension of degree p2 of local fields which are finite extensi...
Let $k$ be a number field, $p$ a prime, and $k^{nr,p}$ the maximal unramified $p$-extension of $k$. ...
Let $k_\infty$ be the cyclotomic $\mathbb{Z}_p$-extension of an algebraic number field $k$. We denot...
In 1947 Šafarevic ̌ initiated the study of Galois groups of maximal p-extensions of fields with the...
AbstractLet K be a finite extension of Qp. Let K∞, r be a Galois extension of K such that Gr: = Gal(...
We describe algorithms to compute fixed fields, splitting fields and towers of radical extensions wi...
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in ...
AbstractLet k=Q(−2379) and knr,2 be the maximal unramified 2-extension of k. To show that knr,2/k is...
ABSTRACT. Let NÛK be a biquadratic extension of algebraic number fields, and G = Gal(NÛK). Under a w...
Soient p un nombre premier et \mathbf{k} un corps local contenant une racine primitive p-ième de l'u...
Soient p un nombre premier et \mathbf{k} un corps local contenant une racine primitive p-ième de l'u...
AbstractWe introduce a new method for finding Galois groups, by modifying the p-group generation alg...
If K/F is a Galois field extension with Galois group of prime power order distinct from char(F), the...
ABSTRACT. Let LÛK be a finite Galois extension of local fields which are finite extensions of Qp, th...
In a previous article we introduced various moduli stacks of two-dimensional tamely potentially Bars...
For L/K, any totally ramified cyclic extension of degree p2 of local fields which are finite extensi...
Let $k$ be a number field, $p$ a prime, and $k^{nr,p}$ the maximal unramified $p$-extension of $k$. ...
Let $k_\infty$ be the cyclotomic $\mathbb{Z}_p$-extension of an algebraic number field $k$. We denot...
In 1947 Šafarevic ̌ initiated the study of Galois groups of maximal p-extensions of fields with the...
AbstractLet K be a finite extension of Qp. Let K∞, r be a Galois extension of K such that Gr: = Gal(...
We describe algorithms to compute fixed fields, splitting fields and towers of radical extensions wi...
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in ...
AbstractLet k=Q(−2379) and knr,2 be the maximal unramified 2-extension of k. To show that knr,2/k is...
ABSTRACT. Let NÛK be a biquadratic extension of algebraic number fields, and G = Gal(NÛK). Under a w...
Soient p un nombre premier et \mathbf{k} un corps local contenant une racine primitive p-ième de l'u...
Soient p un nombre premier et \mathbf{k} un corps local contenant une racine primitive p-ième de l'u...
AbstractWe introduce a new method for finding Galois groups, by modifying the p-group generation alg...