TMVA-v3.8 Users Guide: 92 pages, 16 figures, numerous code examples version 4n high-energy physics, with the search for ever smaller signals in ever larger data sets, it has become essential to extract a maximum of the available information from the data. Multivariate classification methods based on machine learning techniques have become a fundamental ingredient to most analyses. Also the multivariate classifiers themselves have significantly evolved in recent years. Statisticians have found new ways to tune and to combine classifiers to further gain in performance. Integrated into the analysis framework ROOT, TMVA is a toolkit which hosts a large variety of multivariate classification algorithms. They range from rectangular cut optimizati...