4 pages, 4 figuresWe compute roughness exponents of elastic d-dimensional manifolds in (d+1)-dimensional embedding spaces at the depinning transition for d=1,...,4. Our numerical method is rigorously based on a Hamiltonian formulation; it allows to determine the critical manifold in finite samples for an arbitrary convex elastic energy. For a harmonic elastic energy, we find values of the roughness exponent between the one-loop and the two-loop functional renormalization group result, in good agreement with earlier cellular automata simulations. We find that the harmonic model is unstable with respect both to slight stiffening and to weakening of the elastic potential. Anharmonic corrections to the elastic energy allow us to obtain the crit...
International audienceWe obtain explicit expressions for the annealed complexities associated, respe...
4 pages, 3 figuresWe study the steady-state low-temperature dynamics of an elastic line in a disorde...
We study the effect of an external field on (1+1) and (2+1) dimensional elastic manifolds, at zero t...
4 pages, 2 figuresWithin a recently developed framework of dynamical Monte Carlo algorithms, we comp...
4 pages, 3 figuresIn this paper, we compute the roughness exponent zeta of a long-range elastic stri...
companion paper to arXiv:2207.09037. 19 pages, 17 figuresDepinning of elastic systems advancing on d...
We reconsider the problem of the static thermal roughening of an elastic manifold at the critical ...
Companion paper to arXiv:2207.08341There are two main universality classes for depinning of elastic ...
The simultaneous effect of both disorder and crystal-lattice pinning on the equilibrium behavior of ...
We study the nonsteady relaxation of a driven one-dimensional elastic interface at the depinning tra...
We study the steady-state low-temperature dynamics of an elastic line in a disordered medium below t...
For disordered elastic manifolds in the ground state (equilibrium) we obtain the critical exponents ...
5 pagesUsing one loop functional RG we study two problems of pinned elastic systems away from their ...
We examine whether cubic nonlinearities, allowed by symmetry in the elastic energy of a contact line...
A wide class of solid-state models support incommensurate structures. They are mostly given by eithe...
International audienceWe obtain explicit expressions for the annealed complexities associated, respe...
4 pages, 3 figuresWe study the steady-state low-temperature dynamics of an elastic line in a disorde...
We study the effect of an external field on (1+1) and (2+1) dimensional elastic manifolds, at zero t...
4 pages, 2 figuresWithin a recently developed framework of dynamical Monte Carlo algorithms, we comp...
4 pages, 3 figuresIn this paper, we compute the roughness exponent zeta of a long-range elastic stri...
companion paper to arXiv:2207.09037. 19 pages, 17 figuresDepinning of elastic systems advancing on d...
We reconsider the problem of the static thermal roughening of an elastic manifold at the critical ...
Companion paper to arXiv:2207.08341There are two main universality classes for depinning of elastic ...
The simultaneous effect of both disorder and crystal-lattice pinning on the equilibrium behavior of ...
We study the nonsteady relaxation of a driven one-dimensional elastic interface at the depinning tra...
We study the steady-state low-temperature dynamics of an elastic line in a disordered medium below t...
For disordered elastic manifolds in the ground state (equilibrium) we obtain the critical exponents ...
5 pagesUsing one loop functional RG we study two problems of pinned elastic systems away from their ...
We examine whether cubic nonlinearities, allowed by symmetry in the elastic energy of a contact line...
A wide class of solid-state models support incommensurate structures. They are mostly given by eithe...
International audienceWe obtain explicit expressions for the annealed complexities associated, respe...
4 pages, 3 figuresWe study the steady-state low-temperature dynamics of an elastic line in a disorde...
We study the effect of an external field on (1+1) and (2+1) dimensional elastic manifolds, at zero t...