We consider some elliptic boundary value problems in a self-similar ramified domain of ℝ2 with a fractal boundary with Laplace's equation and nonhomogeneous Neumann boundary conditions. The Hausdorff dimension of the fractal boundary is greater than one. The goal is twofold: first rigorously define the boundary value problems, second approximate the restriction of the solutions to subdomains obtained by stopping the geometric construction after a finite number of steps. For the first task, a key step is the definition of a trace operator. For the second task, a multiscale strategy based on transparent boundary conditions and on a wavelet expansion of the Neumann datum is proposed, following an idea contained in a previous work by the same a...