International audienceWe derive fully computable a posteriori error estimates for vertex-centered finite volume-type discretizations of transient convection–diffusion–reaction equations. Our estimates enable actual control of the error measured either in the energy norm or in the energy norm augmented by a dual norm of the skew-symmetric part of the differential operator. Lower bounds, global-in-space but local-in-time, are also derived. These lower bounds are fully robust with respect to convection or reaction dominance and the final simulation time in the augmented norm setting. On the basis of the derived estimates, we propose an adaptive algorithm which enables to automatically achieve a user-given relative precision. Moreover, this alg...
A functional type a posteriori error estimator for the finite element discretisation of the stationa...
We study a posteriori error estimates for convection-diffusion-reaction problems with possibly domin...
We study in this paper a posteriori error estimates for $H^1$-conforming numerical approximations of...
We derive fully computable a posteriori error estimates for vertex-centered finite volume-type discr...
International audienceWe derive in this paper a posteriori error estimates for discretizations of co...
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dériv...
International audienceWe propose and study a posteriori error estimates for convection-diffusion-rea...
We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori erro...
We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori erro...
International audienceWe derive a posteriori error estimates for singularly perturbed reaction-diffu...
22 pagesInternational audienceWe derive a posteriori error estimates for the discretization of the h...
22 pagesInternational audienceWe derive a posteriori error estimates for the discretization of the h...
Abstract. We analyze a posteriori error estimators for finite element discretizations of convection-...
We study a posteriori error estimates for convection-diffusion-reaction problems with possibly domin...
AbstractA posteriori error estimates are derived for unsteady convection–diffusion equations discret...
A functional type a posteriori error estimator for the finite element discretisation of the stationa...
We study a posteriori error estimates for convection-diffusion-reaction problems with possibly domin...
We study in this paper a posteriori error estimates for $H^1$-conforming numerical approximations of...
We derive fully computable a posteriori error estimates for vertex-centered finite volume-type discr...
International audienceWe derive in this paper a posteriori error estimates for discretizations of co...
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dériv...
International audienceWe propose and study a posteriori error estimates for convection-diffusion-rea...
We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori erro...
We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori erro...
International audienceWe derive a posteriori error estimates for singularly perturbed reaction-diffu...
22 pagesInternational audienceWe derive a posteriori error estimates for the discretization of the h...
22 pagesInternational audienceWe derive a posteriori error estimates for the discretization of the h...
Abstract. We analyze a posteriori error estimators for finite element discretizations of convection-...
We study a posteriori error estimates for convection-diffusion-reaction problems with possibly domin...
AbstractA posteriori error estimates are derived for unsteady convection–diffusion equations discret...
A functional type a posteriori error estimator for the finite element discretisation of the stationa...
We study a posteriori error estimates for convection-diffusion-reaction problems with possibly domin...
We study in this paper a posteriori error estimates for $H^1$-conforming numerical approximations of...