International audienceWe call a point process $Z$ on $\mathbb R$ \emph{exp-1-stable} if for every $\alpha,\beta\in\mathbb R$ with $e^\alpha+e^\beta=1$, $Z$ is equal in law to $T_\alpha Z+T_\beta Z'$, where $Z'$ is an independent copy of $Z$ and $T_x$ is the translation by $x$. Such processes appear in the study of the extremal particles of branching Brownian motion and branching random walk and several authors have proven in that setting the existence of a point process $D$ on $\mathbb R$ such that $Z$ is equal in law to $\sum_{i=1}^\infty T_{\xi_i} D_i$, where $(\xi_i)_{i\ge1}$ are the atoms of a Poisson process of intensity $e^{-x}\,\mathrm d x$ on $\mathbb R$ and $(D_i)_{i\ge 1}$ are independent copies of $D$ and independent of $(\xi_i)_...