This work is based on the link between the field of moduli of a cover and Hurwitz spaces. Given a cover, arithmetic aspects of these spaces provide results about ramification in the field of moduli over the rationality field of the branch points. For instance, Beckmann's theorem, which limits search of ramification in this extension to some places, namely the bad places, is proved in a natural way in this context. A finer analysis of Hurwitz spaces gives information about the bad places that do not divide the order of the monodromy group of the cover (but for which the branch locus becomes singular, though) : the point is to consider the cover of the completion of the Hurwitz space over the completion of the configuration space. Given any s...
Dans cette thèse, on introduit la notion de revêtement potentiellement inséparable et on se propose ...
We investigate the $p$-rank stratification of the moduli space $\mathcal{ASW}_{(d_1,d_2,\ldots,d_n)}...
Hurwitz moduli spaces for G-covers of the pro jective line have two classical variants whether G- co...
Le contexte de cette thèse est le problème inverse de la théorie de Galois et en particulier son app...
Le contexte de cette thèse est le problème inverse de la théorie de Galois et en particulier son app...
Abstract. This survey grew out of notes accompanying a cy-cle of lectures at the workshop Modern Tre...
We extend results by Mirzakhani in Maryam Mirzakhani. "Weil-Petersson volumes and intersection theor...
Let Y be a smooth, projective complex curve of genus g ≥ 1. Let d be an integer ≥ 3, let e = {e1, e2...
AbstractLet Y be a smooth, projective complex curve of genus g ⩾ 1. Let d be an integer ⩾ 3, let e =...
In this paper we define Harbater-Mumford subvarieties, which are special kinds of closed subvarieties...
textHurwitz numbers are a weighted count of degree d ramified covers of curves with specified ramifi...
We give conditions for the monodromy group of a Hurwitz space over the configuration space of branch...
International audienceUsing a Hurwitz space computation, we determine the canonical model of the cov...
We consider the moduli space $\mathfrak{M}_{g,n}$ of Riemann surfaces of genus $g\ge0$ with $n\ge1$ ...
For the thesis project, we are interested in learning about the Harris-Mumford modular compactifica...
Dans cette thèse, on introduit la notion de revêtement potentiellement inséparable et on se propose ...
We investigate the $p$-rank stratification of the moduli space $\mathcal{ASW}_{(d_1,d_2,\ldots,d_n)}...
Hurwitz moduli spaces for G-covers of the pro jective line have two classical variants whether G- co...
Le contexte de cette thèse est le problème inverse de la théorie de Galois et en particulier son app...
Le contexte de cette thèse est le problème inverse de la théorie de Galois et en particulier son app...
Abstract. This survey grew out of notes accompanying a cy-cle of lectures at the workshop Modern Tre...
We extend results by Mirzakhani in Maryam Mirzakhani. "Weil-Petersson volumes and intersection theor...
Let Y be a smooth, projective complex curve of genus g ≥ 1. Let d be an integer ≥ 3, let e = {e1, e2...
AbstractLet Y be a smooth, projective complex curve of genus g ⩾ 1. Let d be an integer ⩾ 3, let e =...
In this paper we define Harbater-Mumford subvarieties, which are special kinds of closed subvarieties...
textHurwitz numbers are a weighted count of degree d ramified covers of curves with specified ramifi...
We give conditions for the monodromy group of a Hurwitz space over the configuration space of branch...
International audienceUsing a Hurwitz space computation, we determine the canonical model of the cov...
We consider the moduli space $\mathfrak{M}_{g,n}$ of Riemann surfaces of genus $g\ge0$ with $n\ge1$ ...
For the thesis project, we are interested in learning about the Harris-Mumford modular compactifica...
Dans cette thèse, on introduit la notion de revêtement potentiellement inséparable et on se propose ...
We investigate the $p$-rank stratification of the moduli space $\mathcal{ASW}_{(d_1,d_2,\ldots,d_n)}...
Hurwitz moduli spaces for G-covers of the pro jective line have two classical variants whether G- co...