Jury:Henri SKODA (Université de Paris 6), Président; Laurent BONAVERO (Université de Grenoble 1); Jean-Pierre DEMAILLY (Université de Grenoble 1), Directeur de thèse; Christiaan PETERS (Université de Grenoble 1); Nessim SIBONY (Université de Paris Sud).We generalize first the Ohsawa-Takegoshi-Manivel $L^2$ extension theorem to the case of jets of sections of Hermitian holomorphic line bundles on weakly pseudoconvex Kähler manifolds. Then we give a new simple proof of a theorem of Uhlenbeck and Yau that was the main technical difficulty in their proof of the Kobayashi-Hitchin correspondence on compact Kähler manifolds. This is done via a $(1,1)$-current interpreted a posteriori as the curvature current of some quotient bundle. Thirdly, we in...