The verification of concurrent finite-state systems is confronted in practice with the state explosion problem (prohibitive size of the underlying state space), which occurs for realistic systems containing many parallel processes and complex data structures. Various techniques for fighting against state explosion have been proposed, such as on-the-fly verification, partial order reduction, and distributed verification. However, practical experience has shown that none of these techniques alone is always sufficient to handle large-scale systems. In this thesis, we propose a combination of these approaches in order to scale up their capabilities. Our approach is based upon Boolean Equation Systems (BESs), which provide an elegant intermediat...