In this thesis we develop a new approach within the framework of asset pricing models that incorporates two key features of the latent volatility: co-movement among conditionally heteroscedastic financial returns and switching between different unobservable regimes. By combining conditionally heteroscedastic factor models with hidden Markov chain models we derive a dynamical local model for segmentation and prediction of multivariate financial time series. We concentrate, more precisely on situations where the factor variances are modelled by univariate GQARCH processes. The EM algorithm that we have developed for the maximum likelihood estimation is based on a quasi-optimal Kalman filter approach combined with a Viterbi approximation which...
We propose a stochastic volatility model where the conditional variance of asset returns switches ac...
This thesis presents some contributions to time series modeling, especially in the development of po...
This thesis presents some contributions to time series modeling, especially in the development of po...
Dans cette thèse nous proposons une nouvelle approche dans le cadre des modèles d'évaluation des act...
In this article we develop a new approach within the framework of asset pricing models that incorpor...
RR-5862In this article we develop a new approach within the framework of asset pricing models that i...
In this article we develop a new approach within the framework of asset pricing models that incorpor...
Die Analyse ökonomischer Zeitreihen mit Hilfe autoregressiver Verfahren stellt mittlerweile eine bed...
In this article we propose a generalization of the linear factor model, that combines hidden Markov ...
We outline a two-stage estimation method for a Markov-switching Generalized Autoregressive Condition...
Cet article propose un cadre semi-paramétrique adapté à la modélisation de l'hétéroscédasticité cond...
L'objectif de cette thèse est d'étudier le problème de la modélisation des changements de régime dan...
A new process — the factorial hidden Markov volatility (FHMV) model — is proposed to model financia...
A new process — the factorial hidden Markov volatility (FHMV) model — is proposed to model financia...
This thesis discusses latent variable models with the aim of uncovering hidden structure in multi-di...
We propose a stochastic volatility model where the conditional variance of asset returns switches ac...
This thesis presents some contributions to time series modeling, especially in the development of po...
This thesis presents some contributions to time series modeling, especially in the development of po...
Dans cette thèse nous proposons une nouvelle approche dans le cadre des modèles d'évaluation des act...
In this article we develop a new approach within the framework of asset pricing models that incorpor...
RR-5862In this article we develop a new approach within the framework of asset pricing models that i...
In this article we develop a new approach within the framework of asset pricing models that incorpor...
Die Analyse ökonomischer Zeitreihen mit Hilfe autoregressiver Verfahren stellt mittlerweile eine bed...
In this article we propose a generalization of the linear factor model, that combines hidden Markov ...
We outline a two-stage estimation method for a Markov-switching Generalized Autoregressive Condition...
Cet article propose un cadre semi-paramétrique adapté à la modélisation de l'hétéroscédasticité cond...
L'objectif de cette thèse est d'étudier le problème de la modélisation des changements de régime dan...
A new process — the factorial hidden Markov volatility (FHMV) model — is proposed to model financia...
A new process — the factorial hidden Markov volatility (FHMV) model — is proposed to model financia...
This thesis discusses latent variable models with the aim of uncovering hidden structure in multi-di...
We propose a stochastic volatility model where the conditional variance of asset returns switches ac...
This thesis presents some contributions to time series modeling, especially in the development of po...
This thesis presents some contributions to time series modeling, especially in the development of po...